Abstract
Multinomial logistic regression is a logistic regression where the dependent variable is polychotomous is dependent variable value of more than two categories. Multinomial logistic regression parameter estimation usually use classical method that is based only on current information obtained from the sample without taking into account the initial information of logistic regression parameters. If have early information about parameter is prior distribution, the parameter estimation can use Bayes method. Bayesian methods combine information on the sample with prior distribution of information, and the results are expressed in the posterior distribution. If posterior distribution can not be derived analytically so approximated using Markov Chain Monte Carlo (MCMC) algorithm especially Metropolis-Hastings algorithm. This algorithm uses acceptance and rejection mechanism to generate a sequence of random samples. Keyword : Multinomial Logistic Regression, Bayes Method, Markov Chain Monte Carlo algorithm (MCMC), Metropolis-Hastings algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.