Abstract
Bayesian inference has become an important framework for calibrating complex ecological and environmental models. Markov-Chain Monte Carlo (MCMC) algorithms are the methodological backbone of this framework, but they are not easily parallelizable and can thus not make optimal use of modern computer architectures. A possible solution is the use of Sequential Monte Carlo (SMC) algorithms. Currently, SMCs are used mainly for Bayesian state updating, for example in weather forecasting, and are thought to be less efficient for parameter calibration than MCMCs. Unlike MCMCs, however, SMCs are easily parallelizable. Thus, SMCs may become an interesting alternative when modelers have access to parallel computing environments. The purpose of this paper is to provide an introduction to SMC algorithms for Bayesian model calibration, and to explore the trade-off between efficiency and parallelizability for MCMC and SMC algorithms. To that end, we discuss different SMC variants, and benchmark them against a state-of-the-art MCMC algorithm by calibrating three ecological models of increasing complexity. Our results show that, with appropriately chosen settings, SMCs can be faster than state-of-the-art MCMC algorithms when a sufficiently large number of parallel cores are available and when the model runtime is large compared to communication overhead for parallelization (on our hardware, a model runtime of 20 ms was enough to favor SMC algorithms). Efficient SMC settings were characterized by a balanced mix of SMC filtering and MCMC mutation steps, suggesting that mixing MCMC and SMC principles may be ideal for creating efficient and parallelizable calibration algorithms. The algorithms used in this study are provided within the BayesianTools R package for Bayesian inference with complex ecological models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.