Abstract

The analysis of the bearing characteristics and deformation mechanism of composite foundation reinforced with geogrid-encased stone columns is presented in order to obtain its settlement calculation method. The settlement of composite foundation is divided into three sections which are the reinforced section, unreinforced section, and underlying stratum. Based on Hooke’s law of space problem and the thoughts of the layer-wise summation method, the relative slip displacement between pile and soil of reinforced section without plastic zone is analyzed. The settlement of reinforced section is calculated by the layered iteration method based on the pile element model. The compatibility of vertical and radial deformations of unreinforced section is analyzed based on the pile-soil element model. The settlement of underlying stratum is still calculated by the layer-wise summation method. Finally, two engineering examples are analyzed and the results show that the settlement calculated by the presented method is close to the measured one. The method overcomes the defect that the calculated results by the other existing methods are more dangerous and it is more feasible and can be applied in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.