Abstract
This paper addresses the critical challenges of renewable energy integration and regional power balance in smart grids, which have become increasingly complex with the rapid growth of distributed energy resources. It proposes a novel three-layer scheduling framework with a dynamic peer-to-peer (P2P) trading mechanism to address these challenges. The framework incorporates a preliminary local supply–demand balance considering renewable energy, followed by an inter-regional P2P trading layer and, ultimately, flexible resource deployment for final balance adjustment. The proposed dynamic continuous P2P trading mechanism enables regions to autonomously switch roles between buyer and seller based on their internal energy status and preferences, facilitating efficient trading while protecting regional privacy. The model features an innovative price update mechanism that initially leverages historical trading data and dynamically adjusts prices to maximize trading success rates. To address the heterogeneity of regional resources and varying energy demands, the framework implements a flexible trading strategy that allows for differentiated transaction volumes and prices. The effectiveness of the proposed framework is validated through simulation experiments using k-means clustered typical daily data from four regions in Northeast China. The results demonstrate that the proposed approach successfully promotes renewable energy utilization, reduces the operational costs of flexible resources, and achieves an efficient inter-regional energy balance while maintaining regional autonomy and information privacy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have