Abstract

The physical assumptions on which linear fluctuation theory is based do not apply to internal noise in non-linear systems. As a consequence, there is still no complete theory for internal (thermal) noise in non-linear electrical networks. In this paper the authors apply Stratonovich's 'non-linear non-equilibrium thermodynamics' to describe thermal noise in reciprocal non-linear RLC-networks. As an example the (deterministic) Brayton-Moser equations are treated. A stochastic description in terms of master equations for the one-time probability density related to the Markov processes of the fluctuating electrical quantities is obtained. This decription is a generalization of Nyquist's theorem to non-linear resistors. When the non-linear resistances are represented by Taylor polynomials, different master equations are obtained for different degrees of non-linearity. A transformation of variables is used to apply the theory to non-linear dynamical network elements. To consider networks including independent sources, the theory is enlarged to open thermodynamical systems. The results are used to derive approximate noise-equivalent circuits for non-linear resistors. In this sense, this paper proves the approximate validity of 'conventional' noise source models and explicitly fixes the stochastic properties of these noise sources (as far as possible).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.