Abstract

We investigate the compactlike pulse signal propagation in a two-dimensional nonlinear electrical transmission network with the intersite circuit elements (both in the propagation and transverse directions) acting as nonlinear resistances. Model equations for the circuit are derived and can reduce from the continuum limit approximation to a two-dimensional nonlinear Burgers equation governing the propagation of the small amplitude signals in the network. This equation has only the mass as conserved quantity and can admit as solutions cusp and compactlike pulse solitary waves, with width independent of the amplitude, according to the sign of the product of its nonlinearity coefficients. In particular, we show that only the compactlike pulse signal may propagate depending on the choice of the realistic physical parameters of the network, and next we study the dissipative effects on the pulse dynamics. The exactness of the analytical analysis is confirmed by numerical simulations which show a good agreement with results predicted by the Rosenau and Hyman K(2,2) equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.