Abstract

There exist no corpora of Arabic nouns. Furthermore, in any Arabic text, nouns can be found in different forms. In fact, by tagging nouns in an Arabic text, the beginning of each sentence can determine whether it starts with a noun or a verb. Part of Speech Tagging (POS) is the task of labeling each word in a sentence with its appropriate category, which is called a Tag (Noun, Verb and Article). In this thesis, we attempt to tag non-vocalized Arabic text. The proposed POS Tagger for Arabic Text is based on searching for each word of the text in our lists of Verbs and Articles. Nouns are found by eliminating Verbs and Articles. Our hypothesis states that, if the word in the text is not found in our lists, then it is a Noun. These comparisons will be made for each of the words in the text until all of them have been tagged. To apply our method, we have prepared a list of articles and verbs in the Arabic language with a total of 112 million verbs and articles combined, which are used in our comparisons to prove our hypothesis. To evaluate our proposed method, we used pre-tagged words from "The Quranic Arabic Corpus", making a total of 78,245 words, with our method, the Template-based tagging approach compared with (AraMorph) a rule-based tagging approach and the Stanford Log-linear Part-Of-Speech Tagger. Finally, AraMorph produced 40% correctly-tagged words and Stanford Log-linear Part-Of-Speech Tagger produced 68% correctly-tagged words, while our method produced 68,501 correctly-tagged words (88%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call