Abstract

Industrial subsea infrastructure inspections using autonomous underwater vehicles (AUV) require high accuracy of AUV navigation relative to the objects being examined. In addition to traditional navigation tools with inertial navigation systems and acoustic navigation equipment, technologies with video information processing are also actively developed today. The visual odometry-based techniques can provide higher navigation accuracy for local maneuvering at short distances to objects. However, in the case of long-distance AUV movements, such techniques typically accumulate errors when calculating the AUV movement trajectory. In this regard, the present article considers a navigation technique that allows for increasing the accuracy of AUV movements in the coordinate space of the object inspected by using a virtual coordinate reference network. Another aspect of the method proposed is to minimize computational costs for AUV moving along the inspection trajectory by referencing the AUV coordinates to the object pre-calculated using the object recognition algorithm. Thus, the use of a network of virtual points for referencing the AUV to subsea objects is aimed to maintain the required accuracy of AUV coordination during a long-distance movement along the inspection trajectory, while minimizing computational costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call