Abstract

Accurate and efficient classification of wetlands, as one of the most valuable ecological resources, using satellite remote sensing data is essential for effective environmental monitoring and sustainable land management. Deep learning models have recently shown significant promise for identifying wetland land cover; however, they are mostly constrained in practical issues regarding efficiency while gaining high accuracy with limited training ground truth samples. To address these limitations, in this study, a novel deep learning model, namely Wet-ConViT, is designed for the precise mapping of wetlands using multi-source satellite data, combining the strengths of multispectral Sentinel-2 and SAR Sentinel-1 datasets. Both capturing local information of convolution and the long-range feature extraction capabilities of transformers are considered within the proposed architecture. Specifically, the key to Wet-ConViT’s foundation is the multi-head convolutional attention (MHCA) module that integrates convolutional operations into a transformer attention mechanism. By leveraging convolutions, MHCA optimizes the efficiency of the original transformer self-attention mechanism. This resulted in high-precision land cover classification accuracy with a minimal computational complexity compared with other state-of-the-art models, including two convolutional neural networks (CNNs), two transformers, and two hybrid CNN–transformer models. In particular, Wet-ConViT demonstrated superior performance for classifying land cover with approximately 95% overall accuracy metrics, excelling the next best model, hybrid CoAtNet, by about 2%. The results highlighted the proposed architecture’s high precision and efficiency in terms of parameters, memory usage, and processing time. Wet-ConViT could be useful for practical wetland mapping tasks, where precision and computational efficiency are paramount.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.