Abstract
Reduction of carbon dioxide (CO2) emissions will have a positive impact on the environment by preventing adverse effects of global warming. To achieve an eco-environment, the primary source of energy needs to shift from fossil fuels to clean renewable energy. Thus, increased utilization of renewable energy overtime reduces air pollution and contributes to securing sustainable energy supply to satisfy future energy needs. The main purpose of this study is to investigate several sustainable hybrid renewable systems for electricity production in Iran. In this regard, critical indicators that have the strongest impact on the environment and energy sustainability are presented in this study. After a comprehensive review of environmental issues, data was collected from the meteorological organization and a techno-economic assessment was performed using HOMER software. It was concluded that the hybrid configuration composed of photovoltaic (PV), wind turbine, diesel generator and battery produced the best outcome with an energy cost of 0.151$/kWh and 15.6% return on investment. In addition, the results showed that with a higher renewable fraction exceeding 72%, this hybrid system can reduce more than 2000 Kg of CO2 emission per household annually. Although excess electricity generation is a challenge in stand-alone systems, by using the fuel cell, an electrolyzer, and a hydrogen tank unit, the amount of energy loss was reduced to less than one-sixth. These results show that selecting useful indicators such as appropriate implementation of policies of new enabling technologies and investments on renewable energy resources, has three potential benefits namely: CO2 reduction, greater sustainable electricity generation and provides an economic justication for stakeholders to invest in the renewable energy sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.