Abstract
This paper deals with the problem of integrated joint type and dimensional synthesis of planar four-bar and six-bar linkages, which could contain both revolute (R) and prismatic (P) joints, for guiding through five specified task positions of the end-effector. In a recent work, we developed a simple algorithm for analyzing a set of given task positions to determine all feasible planar dyads with revolute and/or prismatic joints that can be used to guide through the given positions. This paper extends this algorithm to the integrated joint type and dimensional synthesis of Watt I and II and Stephenson I, II, and III six-bar linkages that contain both R- and P-joints. In the process, we developed a new classification for planar six-bar linkages according to whether the end-effector can be constrained by two dyads (type I), one dyad (type II), or no dyad (type III). In the end, we demonstrate this task-driven synthesis approach with three examples including a novel six-bar linkage for lifting an individual with age disability from seating position to standing position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.