Abstract

This paper presents a single, unified and efficient algorithm for animating the motions of the coupler of all four-bar mechanisms formed with revolute (R) and prismatic (P) joints. This is achieved without having to formulate and solve the loop closure equation associated with each type of four-bar linkages separately. In our previous paper on four-bar linkage synthesis, we map the planar displacements from Cartesian to image space using planar quaternion. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of Generalized- or G-manifolds that best fit the image points in the least squares sense. The three planar dyads associated with Generalized G-manifolds are RR, PR and RP which could construct six types of four-bar mechanisms. In this paper, we show that the same unified formulation for linkage synthesis leads to a unified algorithm for linkage analysis and simulation as well. Both the unified synthesis and analysis algorithms have been implemented on Apple’s iOS platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.