Abstract
Infrared image target recognition provides an important means of night traffic management and battlefield environment monitoring. With the improvement of the performance of infrared sensors and the popularization of applications, it becomes possible to obtain multiview infrared images of the same target in the same scene. A target recognition method combining multiview infrared images is proposed. At first, the internal correlation analysis of multiview infrared images is performed based on the nonlinear correlation information entropy (NCIE). The view subset from all the multiview images with the largest NCIE is selected as candidate samples for the subsequent target recognition. The joint sparse representation (JSR) is used to classify all infrared images in the candidate view subset. JSR can effectively investigate the internal correlation of multiple related sparse representation problems and improve the reconstruction accuracy and classification capabilities. In the experiments, the tests are performed on the collected infrared images of multiple types of traffic vehicles, under the conditions of original, noisy, and occluded samples. The effectiveness and robustness of the proposed method can be verified by comparative analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.