Abstract
Background. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.Results. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.Conclusions. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have