Abstract

ABSTRACT Water distribution networks (WDN) are one of the most critical infrastructures, providing water for essential needs. However, the dearth of information on WDNs due to weak historical records, limited willingness to share data, and security concerns limit a researcher’s understanding of the criticality, adaptability, vulnerability, and interdependencies of WDNs. To address this challenge, we develop a model entitled SyNF (Synthetic Infrastructure) for synthetic WDN generation. SyNF uses a roadway network, water demand, and water source locations to synthesize topology, diameter, and service year of pipes, and location and power requirements of pumps. To show SyNF’s capabilities, we start with the City of Tempe and scale the model to Phoenix metro’s seven major cities. We find a 6% average dissimilarity on pipe size distribution between the original and synthesized WDN in validating SyNF. We also discuss how SyNF can advance our understanding of the criticality, vulnerability, and resilience of WDNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.