Abstract
Water utilities face a challenge in maintaining a good quality of service under a wide range of operational management and failure conditions. Tools for assessing the resilience of water distribution networks are therefore essential for both operational and maintenance optimization. In this paper, a novel graph-theoretic approach for the assessment of resilience for large scale water distribution networks is presented. This is of great importance for the management of large scale water distribution systems, most models containing up to hundreds of thousands of pipes and nodes. The proposed framework is mainly based on quantifying the redundancy and capacity of all possible routes from demand nodes to their supply sources. This approach works well with large network sizes since it does not rely on precise hydraulic simulations, which require complex calibration processes and computation, while remaining meaningful from a physical and a topological point of view. The proposal is also tailored for the analysis of sectorised networks through a novel multiscale method for analysing connectivity, which is successfully tested in operational utility network models made of more than 100,000 nodes and 110,000 pipes.
Highlights
Resilience can be defined as the ability of a system to maintain and adapt its operational performance in the face of failures and other adverse conditions (Laprie 2005; Strigini 2012)
Todini (2000) proposed a resilience index based on the steady state flow analysis of water distribution networks (WDNs) and dissipated energy; the resilience of a water network was defined using a measure of the available surplus energy
The entropic degree, IS, is the measure which provides the poorest estimation of the deterioration in resilience as more pipes are removed, to the results presented by (Greco et al 2012)
Summary
Resilience can be defined as the ability of a system to maintain and adapt its operational performance in the face of failures and other adverse conditions (Laprie 2005; Strigini 2012). Other approaches based on a steady state hydraulic analysis include Prasad and Park (2004) who adapted Todini’s index by incorporating the effects of both surplus pressure and reliability of supply loops assessed by the variability in the diameter of pipes connected to the same node. They applied the method to a multi-objective problem for the optimal design and rehabilitation of a water distribution network. Considering both the network graph of demand nodes and a DMA-graph, a multiscale analysis of resilience is proposed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.