Abstract
Abstract The resilience of water distribution networks (WDNs) should be proactively evaluated to reduce the potential impacts of disruptive events. This study proposes a novel hydraulically-inspired complex network approach (HCNA) to assess and enhance WDN resilience in the case of single-pipe failure. Unlike conventional hydraulic-based models, HCNA requires no hydraulic simulations for resilience analysis. Instead, it quantifies the failure consequences of edges (pipes) on the WDN graph by incorporating topological attributes with flow redistribution triggered by failures. This HCNA procedure leads to the identification of critical edges (pipes), as well as impacted ones, representing edges more susceptible to the failure of others. The impacted edges are then systematically resized by integrating HCNA with a graph-based design approach, obtaining a wide range of resilience enhancement solutions. A comparative study between HCNA and a hydraulic-based model for three WDNs confirms HCNA's effectiveness in identifying the most critical pipes in various network sizes. Furthermore, HCNA provides comparable resilience enhancement solutions with a hydraulic-based evolutionary optimization but with significantly lower computational effort (1,400 times faster). Thus, it can efficiently be used for resilience enhancement of large-scale WDNs, where the application of conventional optimizations is limited due to the intensive computational workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AQUA — Water Infrastructure, Ecosystems and Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.