Abstract
We give a computer-free proof that the sporadic simple group J 1 is a isomorphic to the progenitor 2*5 : A 5 factorized over a single relation. Precisely, we prove that J 1 is defined by the presentation ⟨x, y, t ∣ x 5 = y 3 = (xy)2 = 1 = t 2 = [y, t] = [y, t x 3 ] = (xt)7⟩.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have