Abstract

In this work, a switched capacitor-based successive approximation register (SAR) analog-to-digital converter (ADC) using a passive reference charge sharing and charge accumulation is proposed. For N-bit resolution, the fully differential version of this architecture needs only 6 capacitors, which is a significant improvement over conventional binary-weighted SAR ADC. The proposed SAR ADC is first modeled in MATLAB, and the effect of practical operational transconductance amplifier limitations such as finite values of gain, unity-gain bandwidth and slew rate on ADC characteristics is verified through behavioral simulations. To validate the proposed ADC performance, an 11-bit 2 kS/s SAR ADC is designed and laid out in UMC 180 nm 1P6M CMOS technology with a supply voltage of 1.8 V. The total design occupies an area of $$568\,\upmu \hbox {m} \times 298\,\upmu \hbox {m}$$ and consumes a power as less as $$0.28\,\upmu \hbox {W}$$ . It is found that the integral nonlinearity and differential nonlinearity of this ADC are in the range + 0.35/− 0.84 least significant bit (LSB) and + 0.1/− 0.6 LSB, respectively. In addition, dynamic performance test shows that the proposed SAR ADC offers an effective number of bits of 10.14 and a Walden figure of merit (FoMW) of 0.12 pJ/conv-step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.