Abstract

Orthogonal time-frequency space (OTFS) modulation has been advocated as a promising waveform for achieving integrated sensing and communication (ISAC) due to its superiority in high-mobility adaptability and spectral efficiency. In OTFS modulation-based ISAC systems, accurate channel acquisition is critical for both communication reception and sensing parameter estimation. However, the existence of the fractional Doppler frequency shift spreads the effective channels of the OTFS signal significantly, making efficient channel acquisition very challenging. In this paper, we first derive the sparse structure of the channel in the delay Doppler (DD) domain according to the input and output relationship of OTFS signals. On this basis, a new structured Bayesian learning approach is proposed for accurate channel estimation, which includes a novel structured prior model for the delay-Doppler channel and a successive majorization-minimization (SMM) algorithm for efficient posterior channel estimate computation. Simulation results show that the proposed approach significantly outperforms the reference schemes, especially in the low signal-to-noise ratio (SNR) region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.