Abstract

Microfluidic spun gelation mechacrylate (GelMA) microfiber has been widely utilized as a promising bioink for 3D bioprinting. However, its weak and easily tuned mechanical properties are still difficult to precisely evaluate, due to the lack of an effective stretching method. In this paper, we propose a force-control-based cyclic loading method for rapidly evaluating the elastic modulus: the E of the microfibers with different GelMA concentrations. A two-tube manipulation system is used to stretch microfiber with a non-destructive process. Based on the model reference adaptive control strategy, the stress response can be fitted into a sinusoidal wave when a small sinusoidal strain is automatically applied onto the microfiber. Afterwards, the maximum tensile stress and tensile stain is obtained to determine the E. Moreover, different stress amplitudes and frequencies are applied to form different stress-strain loops with almost same E. Compared with a frequently-used constant force loading method, the proposed method shows an obvious advantage in measurement accuracy, especially for low-concentration GelMA microfiber. Furthermore, the reasonableness of the measured E for different GelMA concentrations is confirmed by 3D cell culture experiments, and the results show the proposed method has great application potential to investigate the interaction between cell and fibrous bioink substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.