Abstract

A quarter-car model is used to investigate the vibration response of cars with uncertainty under random road input excitations in this paper. The sprung mass, unsprung mass, suspension damping, suspension stiffness, and tyre stiffness are considered as random variables. The road irregularity is considered a Gaussian random process and modelled by means of a simple exponential power spectral density. The power spectral density, mean value, standard deviation, and variation coefficient of the vehicle's natural frequencies and mode shapes are obtained by using the Monte Carlo simulation method. The computational expressions for the numerical characteristics of the mean square value of the vehicle's random response in the frequency domain are developed by means of the random variable's functional moment method. The influences of the randomness of the vehicle's parameters on the vehicle's dynamic response are investigated in detail using a practical example, and some useful conclusions are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.