Abstract

This paper proposes a mechanistic-empirical pavement damage model to predict changes in 3D road profiles due to dynamic axle loads. The traffic is represented by a fleet of quarter cars which allows for statistical variability in model parameters such as velocity, suspension stiffness, suspension damping, sprung mass, unsprung mass and tyre stiffness. The fleet model generates statistical distributions of dynamic force at each point which are used to predict pavement damage. As the pavement deteriorates, the distributions of dynamic axle force are changed by the changing road profile. This paper introduces a 3D approach – the transverse position of the wheel is represented by a Laplace probability distribution. This influences the extent to which the force patterns are spatially repeatable. Differences in the range of 10–30% are found between 2D and 3D predictions of pavement life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.