Abstract
Traditional Monte Carlo methods for particle transport utilize source iteration to express the solution, the flux density, of the transport equation as a Neumann series. Our contribution is to show that the particle paths simulated within source iteration are associated with the adjoint flux density and the adjoint particle paths are associated with the flux density. We make our assertion rigorous through the use of stochastic calculus by representing the particle path used in source iteration as a solution to a stochastic differential equation (SDE). The solution to the adjoint Boltzmann equation is then expressed in terms of the same SDE, and the solution to the Boltzmann equation is expressed in terms of the SDE associated with the adjoint particle process. An important consequence is that the particle paths used within source iteration simultaneously provide Monte Carlo samples of the flux density and adjoint flux density in the detector and source regions, respectively. The significant practical implication is that particle trajectories can be reused to obtain both forward and adjoint quantities of interest. To the best our knowledge, the reuse of entire particles paths has not appeared in the literature. Monte Carlo simulations are presented to support the reuse of the particle paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.