Abstract
The convergence of the discontinuous Galerkin method for the nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show the existence of the resulting approximations and prove optimal order error estimates in L ∞ ( L 2 ) . L^{\infty }(L^{2} ) . These estimates are valid under weak restrictions on the space-time mesh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.