Abstract

In this paper, we study the convergence and superconvergence properties of an ultra weak discontinuous Galerkin (DG) method for linear fourth-order boundary-value problems (BVPs). We prove several optimal L2 error estimates for the solution and its derivatives up to third order. In particular, we prove that the DG solution is (p+1)-th order convergent in the L2-norm, when piecewise polynomials of degree at most p are used. We further prove that the p-degree DG solution and its derivatives up to order three are O(h2p−2) superconvergent at either the downwind points or upwind points. Numerical examples demonstrate that the theoretical rates are sharp. We also observed optimal rates of convergence and superconvergence even for nonlinear BVPs. Our proofs are valid for arbitrary regular meshes and for Pp polynomials with degree p≥3, and for the classical boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.