Abstract
A singular function boundary integral method for Laplacian problems with boundary singularities is analyzed. In this method, the solution is approximated by the truncated asymptotic expansion for the solution near the singular point and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. The resulting discrete problem is posed and solved on the boundary of the domain, away from the point of singularity. The main result of this paper is the proof of convergence of the method; in particular, we show that the method approximates the generalized stress intensity factors, i.e., the coefficients in the asymptotic expansion, at an exponential rate. A numerical example illustrating the convergence of the method is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.