Abstract
Abstract We present a Singular Function Boundary Integral Method (SFBIM) for solving elliptic problems with a boundary singularity. In this method the solution is approximated by the leading terms of the asymptotic solution expansion, which exists near the singular point and is known for many benchmark problems. The unknowns to be calculated are the singular coefficients, i.e. the coefficients in the asymptotic expansion, also called (generalized) stress intensity factors. The discretized Galerkin equations are reduced to boundary integrals by means of Green’s theorem and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers, the values of which are introduced as additional unknowns in the resulting linear system. The method is described for two-dimensional Laplacian problems for which the analysis establishes exponential rates of convergence as the number of terms in the asymptotic expansion is increased. We also discuss the extension of the method to three-dimensional Laplacian problems with exhibits edge singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.