Abstract

AbstractIn this article, we analyze the singular function boundary integral method (SFBIM) for a two‐dimensional biharmonic problem with one boundary singularity, as a model for the Newtonian stick‐slip flow problem. In the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. By means of Green's theorem, the resulting discretized equations are posed and solved on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is increased. Our theoretical results are illustrated through a numerical experiment. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.