Abstract

Since the advent of electromyogram recording, precise measures of tremor and gait have been used to study movement disorders such as Parkinson's disease. Now, a wide range of accelerometers and other motion-tracking technologies exist to better inform researchers and clinicians, yet such systems are rarely tested for accuracy or suitability before use. Our inexpensive test-rig can produce sinusoidal displacements using a simple cantilever system driven by a subwoofer. Controlled sinusoids were generated using computer software, and the displacement amplitudes of the test-rig were verified with fiducial marker tracking. To illustrate the use of the test-rig, we evaluated an accelerometer and an electromagnetic motion tracker. Accelerometry recordings were accurate to within±0.09g of actual peak-to-peak amplitude with a frequency response close to unity gain between 1 and 20Hz. The electromagnetic sensor underestimated peak displacement by 2.68mm, which was largely due to a diminishing gain with increasing frequency. Both sensors had low distortion. Overall sensitivity was limited by noise for the accelerometer and quantisation resolution for the electromagnetic sensor. Our simple and low-cost test-rig can be used to bench-test sensors used in movement disorders research. It was able to produce reliable sinusoidal displacements and worked across the 1- to 20-Hz frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.