Abstract

Triclosan (TCS) has been widely used as an antibacterial and antifungal agent in household cleaning and personal care products. The widespread use of TCS in the cleaning products poses a potential risk to the ecological system and human health due to its release into sediments, wastewater and ground water resources causing chronicle toxicity to aquatic organisms. However, no simple method is available for its detection and quantitative determination in aqueous solution. A novel molecular imprinted surface plasmon resonance (SPR) chemical sensor was developed for sensitive and selective detection of triclosan (TCS) in wastewater, using allylmercaptane modified gold SPR chip and imprinted poly(2-hydroxyethyl methacrylate–methacryloylamidoglutamic acid) [p(HEMAGA)] nanofilm. The unmodified and imprinted surfaces of the SPR chip were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and contact angle measurements. The developed sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range and detection limit of TCS were obtained as 0.05–1.0ng/mL and 0.017ng/mL, respectively. The developed molecular imprinted nanosensor was successfully applied to wastewater samples for the determination of TCS and exhibited excellent performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.