Abstract

Concentric face gear split-torque transmission system (CFGSTTS) has great applied value in the field of aeronautical transmission due to the characteristic of high integration. Mesh stiffness, as one of the most primary sources of vibration, is vitally important for the dynamic performances of gear transmission system. The existing finite element method (FEM) and analytical method (AM) are not suitable for tackling the mesh stiffness calculation of closed-loop multi-branch system such as CFGSTTS. Thus, a semi-analytical method (SAM) is presented and verified, which combines the high precision of FEM with the high efficiency of AM. Additionally, the differences between the mesh stiffness of independent face gear drive and that of the same gear pair in CFGSTTS under accordant load is researched by applying SAM. The influence rules of distribution angle and load condition on the mesh stiffness of gear pairs considering system structure are also studied. Results demonstrate that the mesh stiffness of gear pairs in CFGSTTS is time-varying and tends to be consistent with each other by adjusting load parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call