Abstract

Purpose The purpose of this paper is to obtain the single-tooth stiffness, single-tooth time-varying meshing stiffness and comprehensive meshing stiffness of the internal and external face gears and to analyze the influence of the modulus, pressure angle and tooth width of each face gear on the single-tooth stiffness of the gear in nutation face gear transmission. Design/methodology/approach From the point of view of material mechanics, the gear teeth of nutation face gear are simplified as spacial variable cross-section beams. The shear deformation of gear teeth, the bending deformation of tooth root and the additional elastic deformation caused by the base deformation are gotten by simplified trapezoidal section method, thus the stiffness of nutation face gear teeth can be obtained. The comparison with finite element method results verifies the rationality of simplified trapezoidal section method for calculating the tooth stiffness of nutation face gear. Findings The variation of stiffness of internal and external face gears along the meshing line and tooth height in nutation face gear transmission is studied, and the variation laws of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained. Originality/value Nutation face gear transmission is a new type of transmission. The stiffness of face gear teeth is analyzed, and the variation rules of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained, which not only enriches the research of nutation face gear transmission but also has important guiding significance for the application of nutation face gear in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.