Abstract
Robust and flexible semantic labeling of images is still a basic problem in content-based image representation and retrieval. In this paper, a self-organizing image description model (SID) was put forward for describing the image high-level semantic content. This model is a hierarchical architecture, which includes primitive image layer, image feature layer, image semantic layer, multi-level semantic pattern layer and semantic labeling layer. A semantic-based retrieval algorithm (SBRA) for image high-level semantic content retrieval was designed and implemented. The performance of an experimental image retrieval system is evaluated on a database of around 3000 images. The experimental results show that SID and SBRA are effective in describing image high-level semantic content and can provide flexible image description and efficient image retrieval performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have