Abstract
Computational ghost imaging needs to acquire a large number of correlated measurements between reference patterns and the scene for reconstruction, so extremely high acquisition speed is crucial for fast ghost imaging. With the development of technologies, high frequency illumination and detectors are both available, but their synchronization needs technique demanding customization and lacks flexibility for different setup configurations. This letter proposes a self-synchronization scheme that can eliminate this difficulty by introducing a high precision synchronization technique and corresponding algorithm. We physically implement the proposed scheme using a 20kHz spatial light modulator to generate random binary patterns together with a 100 times faster photodiode for high speed ghost imaging, and the acquisition frequency is around 14 times faster than that of state-of-the-arts.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have