Abstract

Fiber optic gyroscope (FOG)-based north finding is extensively applied in navigation, positioning, and various fields. In dynamic north finding, an accelerated turntable speed shortens the time required for north finding, resulting in a rapid north-finding response. However, with an increase in turntable speed, the turntable's jitter contributes to signal contamination in the FOG, leading to a deterioration in north-finding accuracy. This paper introduces a divide-and-conquer algorithm, the segmented cross-correlation algorithm, designed to mitigate the impact of turntable speed jitter. A model for north-finding error is established and analyzed, incorporating FOG's self-noise and the turntable's speed jitter. To validate the feasibility of our method, we implemented the algorithm on a FOG. The simulation and experimental results exhibited a strong concordance, affirming the validity of our proposed north-finding error model. The experimental findings indicate that, at a turntable speed of 180°/s, the north-finding bias error within a 360 s duration is 0.052°, representing a 64% improvement over the traditional algorithm. These results indicate the effectiveness of the proposed algorithm in mitigating the impact of unstable turntable speeds, offering a solution for north finding with both prompt response and enhanced accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call