Abstract

This paper addresses the challenge of detecting unknown or unforeseen obstacles in railway track transportation, proposing an innovative detection strategy that integrates an incremental clustering algorithm with lightweight segmentation techniques. In the detection phase, the paper innovatively employs the incremental clustering algorithm as a core method, combined with dilation and erosion theories, to expand the boundaries of point cloud clusters, merging adjacent point cloud elements into unified clusters. This method effectively identifies and connects spatially adjacent point cloud clusters while efficiently eliminating noise from target object point clouds, thereby achieving more precise recognition of unknown obstacles on the track. Furthermore, the effective integration of this algorithm with lightweight shared convolutional semantic segmentation algorithms enables accurate localization of obstacles. Experimental results using two combined public datasets demonstrate that the obstacle detection average recall rate of the proposed method reaches 90.3%, significantly enhancing system reliability. These findings indicate that the proposed detection strategy effectively improves the accuracy and real-time performance of obstacle recognition, thereby presenting important practical application value for ensuring the safe operation of railway tracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.