Abstract

As the sizes of many contemporary databases continue to grow rapidly, incremental clustering has emerged as an essential issue for conducting data analysis on contemporary databases. An incremental clustering algorithm refers to an abstraction of the distribution of the data instances generated by the previous run of the algorithm and therefore is able to cope well with the ever-growing contemporary databases. There are two main challenges in the design of incremental clustering algorithms. The first challenge is how to reduce information loss due to the data abstraction (or summarization) operations. The second challenge is that the clustering result should not be sensitive to the order of input data. This paper presents the GRIN algorithm, an incremental hierarchical clustering algorithm for numerical datasets based on the gravity theory in physics. In the design of GRIN, a statistical test aimed at reducing information loss and distortion is employed to control formation of subclusters as well as to monitor the evolution of the dataset. Due to the statistical test-based summarization approach, GRIN is able to achieve near linear scalability and is not sensitive to input ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.