Abstract
The Industrial Internet of Things (IIoT) revolutionizes both industrial and residential operations by integrating AI (artificial intelligence)-driven analytics with real-time monitoring, optimizing energy usage, and significantly enhancing energy efficiency. This study proposes a secure IIoT framework that simultaneously predicts both active and reactive loads while also incorporating anomaly detection. The system is optimized for real-time deployment on an edge server, such as a single-board computer (SBC), as well as on a cloud or centralized server. It ensures secure and reliable industrial operations by integrating smart data acquisition systems with real-time monitoring, control, and protective measures. We propose a Temporal Convolutional Networks-Gated Recurrent Unit-Attention (TCN-GRU-Attention) model to predict both active and reactive loads, which demonstrates superior performance compared to other conventional models. The performance metrics for active load forecasting are 0.0183 Mean Squared Error (MSE), 0.1022 Mean Absolute Error (MAE), and 0.1354 Root Mean Squared Error (RMSE), while for reactive load forecasting, the metrics are 0.0202 (MSE), 0.1077 (MAE), and 0.1422 (RMSE). Furthermore, we introduce an optimized Isolation Forest model for anomaly detection that considers the transient conditions of appliances when identifying irregular behavior. The model demonstrates very promising performance, with the average performance metrics for all appliances using this Isolation Forest model being 95% for Precision, 98% for Recall, 96% for F1 Score, and nearly 100% for Accuracy. To secure the entire system, Transport Layer Security (TLS) and Secure Sockets Layer (SSL) security protocols are employed, along with hash-encoded encrypted credentials for enhanced protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.