Abstract

Lower tropospheric thermal structure greatly affects atmospheric boundary-layer (ABL) stability and mixing processes with the free troposphere. In particular, in polluted urban zones, ABL stratification becomes a key variable in air quality research. This study focuses on generating a climatology (1990–2017) of the seasonal variability of ABL thermal structure in Mexico City by way of radiosonde analysis. Thermal inversion intensity and frequency are shown to be greater during winter and spring, a behaviour which coincides with greater pollutant concentrations. Higher concentrations are found during the dry season (November to May) than during the rainy months. In addition, significantly higher than normal surface pollutant concentrations are found on days with simple thermal inversion layers as well as during multilayer inversion days. Furthermore, stable layers, determined by potential temperature, are found throughout the year but more frequently during winter, whereas stable layers based on the virtual potential temperature prevail all year. In regions of complex terrain, such multiple stable layers have also been identified by previous authors. Additionally, the most unstable surface layers (in which the bulk Richardson number ( $${Ri}_{\mathrm {B}}$$ ) is small) develop during the rainy season, whereas during winter there are more levels in the vertical column with higher $${Ri}_{\mathrm {B}}$$ values. Although the Mexico City ABL and pollution episodes have been widely studied, this represents the first long-term investigation to consider the thermal stability of the ABL. Therefore, the present study provides a baseline for further research employing different observational techniques and high-resolution numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.