Abstract

The Atmospheric Boundary Layer (ABL) height is a key parameter in air quality research as well as for numerical simulations and forecasts. The identification of thermally stable layers, often with radiosondes, has been a common approach for estimating ABL height, though with limited temporal coverage. Remote sensing techniques offer essentially continuous measurements. Nevertheless, ABL height retrievals from different methods can vary greatly when compared, which is particularly notable for topographically complex terrains, such as that surrounding Mexico City. This study, employing one year of data in Mexico City, reveals that the daytime convective boundary layer height (retrieved from Doppler lidar data) is typically lower than the aerosol layer height (retrieved from ceilometer data). Although both estimated heights evolved diurnally, the more elevated aerosol layer decays more slowly, suggesting that the mechanisms that elevate aerosols are not limited to convective motions. Additionally, both diurnal and seasonal variability are investigated, comparing remotely sensed-retrieved heights with thermally stable layers estimated from radiosonde data. Multiple stable layers often develop, those at higher levels have similar values to the ceilometer-retrieved heights, while stable layers at lower heights are similar to Doppler lidar height retrievals. The present research constitutes the first detailed analysis of ceilometer backscatter and Doppler lidar thresholding methods for estimating ABL height over Mexico City, and our results illustrate the complexity of mixing mechanisms on the ABL in this region of complex orography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call