Abstract

During a hypothetical severe accident in a light water reactor, the core and internal structures melt down and the molten materials (corium) may fall into a water pool, forming a debris bed from so-called fuel coolant interactions (FCI), whose characteristics are important to corium coolability. The present study is concerned with the characterization of an ex-vessel debris bed forming form the FCI of a metal rich corium jet falling into a water pool in the reactor cavity. Five scoping tests were carried out on the DEFOR-M test facility using metallic Tin melt at different superheats. The molten tin was employed as the simulant of metal (Zr/Fe) rich corium melt. The processes of melt jet fragmentation and debris formation was recorded by high-speed cameras. The contour and volume of the resulting debris bed were measured by a three-dimensional laser scanning system, and the debris particles were sieved for their size distribution. The experimental results revealed the effects of melt superheat and water subcooling on the characteristics of a debris bed, including the bed’s configuration and porosity, the particles’ morphology and size distribution. A preliminary comparison of debris bed characteristics between metallic melt and oxidic melt was also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.