Abstract
This comprehensive study delves into the application of machine learning (ML) and data mining techniques for the prognosis and diagnosis of Chronic Kidney Disease (CKD), a significant global health concern characterized by the gradual loss of kidney function. Through a detailed examination of various predictive models, the research evaluates the efficacy of different ML algorithms and data mining methodologies in classifying and diagnosing CKD. Utilizing datasets from the UCI machine learning repository and other sources, this study explores a range of ML algorithms-including logistic regression, decision trees, support vector machines, random forest, and deep learning networks-alongside feature selection techniques to enhance prediction accuracy and facilitate early diagnosis. Despite facing challenges such as dataset limitations and the need for external validation, the findings reveal remarkable potential in using ML and data mining to improve CKD diagnosis, with some models achieving accuracy rates exceeding 99%. The research underscores the critical role of technology in advancing CKD diagnosis and management, paving the way for more personalized and effective healthcare solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.