Abstract

In the modern world, chronic kidney disease is one of the most severe diseases that negatively affects human life. It is becoming a growing problem in both developed and underdeveloped countries. An accurate and timely diagnosis of chronic kidney disease is vital in preventing and treating kidney failure. The diagnosis of chronic kidney disease through history has been considered unreliable in many respects. To classify healthy people and people with chronic kidney disease, non-invasive methods like machine learning models are reliable and efficient. In our current work, we predict chronic kidney disease using different machine learning models, including logistic, probit, random forest, decision tree, k-nearest neighbor, and support vector machine with four kernel functions (linear, Laplacian, Bessel, and radial basis kernels). The dataset is a record taken as a case–control study containing chronic kidney disease patients from district Buner, Khyber Pakhtunkhwa, Pakistan. To compare the models in terms of classification and accuracy, we calculated different performance measures, including accuracy, Brier score, sensitivity, Youdent, specificity, and F1 score. The Diebold and Mariano test of comparable prediction accuracy was also conducted to determine whether there is a substantial difference in the accuracy measures of different predictive models. As confirmed by the results, the support vector machine with the Laplace kernel function outperforms all other models, while the random forest is competitive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call