Abstract

Dielectric polymer nanocomposite materials with great energy density and efficiency look promising for a variety applications. This review presents the research on Poly (vinylidene fluoride) (PVDF) polymer and copolymer nanocomposites that are used in energy storage applications such as capacitors, supercapacitors, pulse power energy storage, electric vehicles, energy harvesting, etc. It mainly focuses on the electrical characteristics of the composite film materials with various types of filler. The electrical properties of the composite films have been explored including dielectric permittivity, dielectric loss, dielectric breakdown strength, energy density, and efficiency, as well as finite element analysis. Nanomaterials with surface modification can improve the electrical properties of the composites. Recently, compared to two-phase nanocomposites and three-phase nanocomposites, the multilayer nanocomposites with either combination of fillers and polymers aid to enhance electrical characteristics even more. The various materials used in supercapacitors are studied. It is observed that the usage of PVDF-based polymer composites in energy storage devices is very prospective, and future research into innovative polymer composites and ways to enhance their properties might be considerable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call