Abstract

The polymer nanocomposites have potential applications in flexible electronics due to its interesting dielectric properties. Hence, flexible nanocomposite films of polyvinylidene fluoride (PVDF) polymer and barium hexaferrite (BHF) nanoparticles with high dielectric constant were prepared by the solution cast method. The dielectric behavior of the materials has been understood by employing the impedance spectroscopy technique. The co-existence of α and β phases of PVDF has been observed from the XRD (X-ray Diffractometer) and FTIR (Fourier-transform infrared spectroscopy) analysis. The ratio of α and β phases of PVDF has a great influence on dielectric, ferroelectric and energy storage density of PVDF-BHF nanocomposites and, it depends upon the concentration of BHF in the nanocomposites. FE-SEM (Field Emission Scanning Electron Microscopy) micrographs reveal that the microstructure of the composite depends upon the concentration of BHF in the PVDF matrix. Dielectric properties of nanocomposite highly depends on microstructure of the PVDF-BHF nanocomposite. This observation has been well explained by considering the BLCs (Barrier Layer capacitances) model. Interestingly, the dielectric constant has been enhanced eighteen (18) times at 1 KHz to that of dielectric constant of PVDF. The dielectric constant increases due to the electrostatics and interfacial interaction between the local electric field of the BHF nanoparticle and CH2/CF2 dipole of PVDF chain. The present study opens a new window for the possible use of PVDF-BHF nanocomposite in dielectric and energy storage device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.