Abstract

Additive manufacturing (AM) is an emerging technology that has significant geometric and material capabilities, because of which it is being used in different fields such as aerospace, healthcare, automotive, architecture, and construction. This process takes the digital data for the three-dimensional model to be made and adds materials accordingly in a layer-by-layer manner. Therefore, the understanding of materials at the atomic level may help in getting optimized output in the AM process, and it can have a significant impact on the final products. Molecular dynamics (MD) studies the dynamic behavior of molecules and materials at the atomic and molecular scales. The main objective of this review article is to briefly discuss how MD simulations may be utilized to examine AM processes. This review also covers the potential benefits of using MD to characterize AM processes, the current literature on using MD to simulate AM processes, the primary obstacles and limitations of MD simulations, and the methodologies utilized in AM simulations using MD. Finally, this article concludes with an in-depth discussion and outlines future research potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call