Abstract

Archives of in situ sea surface temperature (SST) measurements extend back more than 160 years. Quality of the measurements is variable, and the area of the oceans they sample is limited, especially early in the record and during the two world wars. Measurements of SST and the gridded data sets that are based on them are used in many applications so understanding and estimating the uncertainties are vital. The aim of this review is to give an overview of the various components that contribute to the overall uncertainty of SST measurements made in situ and of the data sets that are derived from them. In doing so, it also aims to identify current gaps in understanding. Uncertainties arise at the level of individual measurements with both systematic and random effects and, although these have been extensively studied, refinement of the error models continues. Recent improvements have been made in the understanding of the pervasive systematic errors that affect the assessment of long-term trends and variability. However, the adjustments applied to minimize these systematic errors are uncertain and these uncertainties are higher before the 1970s and particularly large in the period surrounding the Second World War owing to a lack of reliable metadata. The uncertainties associated with the choice of statistical methods used to create globally complete SST data sets have been explored using different analysis techniques, but they do not incorporate the latest understanding of measurement errors, and they want for a fair benchmark against which their skill can be objectively assessed. These problems can be addressed by the creation of new end-to-end SST analyses and by the recovery and digitization of data and metadata from ship log books and other contemporary literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call