Abstract

Detailed knowledge of energy and mass fluxes between land and the atmosphere are necessary to monitor the climate of the land and effectively exploit it in growing agricultural commodities. One of the important surface land fluxes is evapotranspiration, which combines the process of evaporation from the soil and that of transpiration from plants, describing the movement of water vapour from the land to the atmosphere. Accurately estimating evapotranspiration in agricultural systems is of high importance for efficient use of water resources and precise irrigation scheduling operations that will lead to improved water use efficiency. This paper reviews the major mechanistic and empirical models for estimating evapotranspiration including the Penman–Monteith, Stanghellini, Priestly–Taylor, and Hargreaves and Samani models. Moreover, the major differences between the models and their underlined assumptions are discussed. The application of these models is also reviewed for both open and closed field mediums and limitations of each model are highlighted. The main parameters affecting evapotranspiration rates in greenhouse settings including aerodynamic resistance, stomatal resistance and intercepted radiation are thoroughly discussed for accurate measurement and consideration in evapotranspiration models. Moreover, this review discusses direct evapotranspiration measurements systems such as eddy covariance and gas exchange systems. Other direct measurements appertaining to specific parameters such as leaf area index and surface leaf temperature and indirect measurements such as remote sensing are also presented, which can be integrated into evapotranspiration models for adaptation depending on climate and physiological characteristics of the growing medium. This review offers important directions for the estimation of evapotranspiration rates depending on the agricultural setting and the available climatological and physiological data, in addition to experimentally based adaptation processes for ET models. It also discusses how accurate evapotranspiration measurements can optimise the energy, water and food nexus.

Highlights

  • The global increase in food demands pressures food systems to increase yields despite limitations in water resources

  • Overestimations theindex evapotranspiration rates leaf were observed, and few studies explained the potential cause of these overestimations in-Direc‐

  • Cluding the challenging parametrisation ofrates the canopy and aerodynamic resistances and the tions for estimating evapotranspiration are proposed based on the reviewed models somewhat non-homogeneous microclimate data collected in greenhouse environments and measurement techniques for both open and closed agricultural settings

Read more

Summary

Introduction

The global increase in food demands pressures food systems to increase yields despite limitations in water resources. There is an impetus to move to more sustainable practices and optimised operations for agricultural systems that will enable efficient use of water resources [1]. A key aspect for efficient agricultural practices is adequate irrigation management, which depends on accurate estimates of crop water requirements. The appropriate evaluation of evapotranspiration is necessary to prevent excess or deficit irrigation and sustain the use of water resources while offering the necessary agricultural commodities. This can be achieved through models that measure and predict evapotranspiration rates, or direct measurements using high-performing instruments. Challenged by the complexity and high cost of directly measuring evapotranspiration, numerous efforts have been deployed in developing estimation models that can be applied to varied applications and growing mediums [3]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call