Abstract
When one or more observations fall outside the control limits, the chart signals the existence of a change in the process. Change point detection is helpful in modelling and prediction of time series and is found in broader areas of applications including process monitoring. Three approaches were proposed for estimating change point in process for the different types of changes in the literature. they are: Maximum Likelihood Estimator (MLE), the Cumulative Sum (CUSUM), and the Exponentially Weighted Moving Average (EWMA) approaches. This paper gives a synopsis of change point estimation, specifies, categorizes, and evaluates many of the methods that have been recommended for detecting change points in process monitoring. The change points articles in the literature were categorized broadly under five categories, namely: types of process, types of data, types of change, types of phase and methods of estimation. Aside the five broad categories, we also included the parameter involved. Furthermore, the use of control charts and other monitoring tools used to detect abrupt changes in processes were reviewed and the gaps for process monitoring/controlling were examined. A combination of different methods of estimation will be a valuable approach to finding the best estimates of change point models. Further research studies would include assessing the sensitivity of the various change point estimators to deviations in the underlying distributional assumptions.
Highlights
Statistical process control (SPC) is designed for decreasing variation in quality process which leads to increase processes performance
We extend the review of Amiri and Allahyari [4] to recent research in change point estimation up till the year 2019
The change type is another characteristic to be considered as regards change point estimation methods for process monitoring
Summary
Ademola John Ogunniran, Kayode Samuel Adekeye2, *, Johnson Ademola Adewara, Muminu Adamu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.